UUCMS. No.

B.M.S COLLEGE FOR WOMEN BENGALURU-560004

III SEMESTER END EXAMINATION – APRIL 2024

M.Sc. MATHEMATICS -DIFFERENTIAL GEOMETRY (CBCS Scheme-F+R)

Course Code MM303T Duration: 3 Hours

QP Code: 13003 Max. Marks: 70

Instructions: 1) All questions carry equal marks. 2) Answer any five full questions.

a) Define directional derivative of a differentiable real-valued function f on E³. If v_p = (v₁, v₂, v₃)_p is a tangent vector to E³ then prove that v_p[f] = Σ³_{i=1} v_i ∂f(p)/∂x_i. Using this result compute v_p[f] for f = e^x cos y , v_p: v = (2, -1, 3), p = (2, 0, 1).
 b) If α be a curve in E³ and f be a differentiable function on E³, then prove that α'(t)[f] = d/dt (f ∘ α)(t).
 c) Let V = y²U₁ - xU₃ and let f = xy, g = z³. Then compute (i)V[f² + g²] (ii) V[fg] (iii) V[V[f]] (iv) fV[g] - gV[f]

2. a) Evaluate the 1-form φ = x²dx - y²dz on the vector fields V, W and 1/x V + 1/y W where V = xU₁ + yU₂ + zU₃ and W= xy(U₁ - U₃) + yz(U₁ - U₂).
b) Show that every regular curve has a unit speed reparameterization. Also find the unit speed parametrization of the curve α(t) = (a cos t, a sin t, bt), a > 0, b ≠ 0.
c) If F: Eⁿ → E^m is a mapping and if β = F(α) is the image of a curve α in Eⁿ then prove that β' = F_{*}(α').

$$(4+7+3)$$

3. a) Explain Frenet apparatus (T, N, B, k, τ) for a unit speed curve β ∈ E³. Express T', N', B' in terms of these.
b) Define a cylindrical helix. Prove that a regular curve with curvature k > 0 is a cylindrical helix if and only if τ/k is constant.
c) Compute ∇_VW for V = (y - x)U₁ + xyU₃, W = x²U₁ + yzU₃.

BMSCW LIBRARY

4. a) If $A = (a_{ij})$ is the attitude matrix and $W = (w_{ij})$, the matrix of connection forms of a frame field E_1, E_2, E_3 then prove that $W = (dA)A^t$.

b) If S and T are translations, then prove that ST = TS is also a translation.

c) If F is an isometry of E^3 such that F(0) = 0 then prove that F is an orthogonal transformation. (5+3+6)

5. a) Let *D* be a non-empty open subset of E^3 and let *f* be a differentiable function defined on *D*. Then prove that $M = \{(x, y, z) \in E^3 / (x, y) \in D, z = f(x, y)\}$ is a simple surface in E^3 .

Deduce that the following are simple surfaces:

i. $M: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$ ii. $M = \{(x, y, z) \in E^3 / (x^2 + y^2)^2 + 3z^2 = 1\}.$

b) If g is a differentiable real-valued function on E^3 and c is a real constant then prove that M: g(x, y, z) = c of E^3 is a surface provided $dg \neq 0$ at any point of M. Also prove that the gradient vector field $\nabla g = \sum \frac{\partial g}{\partial x_i} U_i$ is a nonvanishing normal vector field on the entire surface M.

6. a) If $\alpha: I \to M$ is a curve in a surface M whose route lies in the image $\mathbf{x}(D)$ of a single patch \mathbf{x} then prove that there exist unique differentiable functions a_1, a_2 on I such that $\alpha(t) = \mathbf{x}(a_1(t), a_2(t)) \forall t \in I$.

b) Obtain the parametrization of cylinder.

c) If $F: M \to N$ be a mapping of surfaces and if ξ and η are forms on N, then prove the following:

- i. $F^*(\xi + \eta) = F^*(\xi) + F^*(\eta)$ ii. $F^*(\xi \wedge \eta) = F^*(\xi) \wedge F^*(\eta)$ iii. $F^*(d\xi) = d(F^*\xi)$. (4+3+7)
- 7. a) Obtain shape operator of a sphere and prove that every point of sphere is umbilic.
 b) If p is an umbilic point of a surface M then show that the shape operator at p is just scalar multiplication by k = k₁ = k₂.
 b) With usual notations prove

(i)
$$K = \frac{ln - m^2}{EG - F^2}$$
 and (ii) $H = \frac{Gl + En - 2Fm}{2(EG - F^2)}$
(3+4+7)

8. a) Show that the image of a Monge patch x(u, v) = (u, v, f(u, v)) is minimal if and only if (1 + f_u²)f_{vv} + (1 + f_v²)f_{uu} - 2f_uf_vf_{uv} = 0. Hence deduce that the image of the patch x(u, v) = (u, v, log cos v - log cos u) is minimal with Gaussian curvature K = (-sec² u sec² v)/((1+tan² u+tan² v)²).
b) Find all geodesics on the sphere and cylinder. (8+6)

(7+7)